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An analytical and numerical study is carried out addressing the concept of interface
mobilities. The introduction of such quantities would enable transmission theory to be
employed for primary excitation distributions at interfaces between subsystems covering
more than a fraction of the governing wavelength. Complex interface mobilities are derived
for the important case of plate-like structures comprising the effective characteristics at the
directly excited interface as well as transfer and cross-transfer characteristics between
different interfaces. The analysis, which supplements previous work on distributed
excitation [1], likewise is for annular interfaces. While the interface mobilities developed
are strictly confined to such interfaces, the approach is applicable and the results are also
qualitatively valid for other geometries. It is found that the direct interface mobilities can
be replaced by ordinary point mobilities in the range over which the circumference
(perimeter) of the interface is less than a wavelength of the governing wave. For shorter
wavelengths, the interface mobilities decrease with both frequency and size of the interface.
With respect to interface transfer and cross-transfer mobilities, the applicability of ordinary
point quantities is, besides frequency, also dependent on the interface geometries as well
as their relative, spatial locations. The mobility elements derived for the annular case are
directly implementable in calculation procedures and the asymptotic expressions developed
give essential information with respect to design.
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1. INTRODUCTION

In a recent paper [1], a study was presented regarding the efficiency of higher order
superstructure modes for the transmission of power to a connected structure being the
recipient for the energy. Thereby focusing on the power transmission, the real parts of a
quantity that can be termed effective ‘‘interface’’ mobility were indirectly addressed. It was
concluded that for the frequency range of interest with respect to a class of engineering
applications, only the zero and first order excitation distributions would be of concern.
This class of applications comprises building structures, machine installations and built-up
structural systems.

The interface problem underlying the aforementioned study is of central importance for
superstructures and recipients where the contact areas between connected systems can have
dimensions of the order of or larger than the governing wavelength. In reference [1] it was
indicated that the applicability of transmission theory could be extended by means of
introduction of effective interface mobilities. For the analysis of superstructure–recipient
interaction, however, the imaginary part of the effective interface mobility is also required,
and the previous study must accordingly be supplemented by results for this part. Herein,
complex, effective mobilities of plate-like systems are derived and analyzed for the
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prominent zero and first order excitation distributions, by employing a direct Hankel
transform approach. An analysis of the related problem with an axially excited cylinder,
connected to a thin infinite plate in flexure, has been presented in reference [2]. In that study
however, the response at a point was addressed whereas that of the complete interface is
sought in the present case.

In the analysis, the interface between the two subsystems, superstructure and recipient,
is assumed to be annular and continuous. In contrast to the real part of the interface
mobility, this restricts the applicability of the results, since the imaginary part is sensitive
to the details at the interface [3]. Accordingly, the shape of the interface will have a
quantitative influence, and therefore the results are strictly valid only for an annular
geometry, but reveal also important, qualitative information of the dynamic behaviour for
other geometries, cf., reference [4]. Moreover, the assumed geometry facilitates the physical
interpretation of the results and hence the implications of the interface effects with respect
to design can be clarified. Thereby, it should also be noted that interfaces made up of
groups of contact points are comprised in a qualitative sense.

In order to encompass also the more general case of multiple, large interfaces between
superstructures and recipients, the response field at an adjacent interface is considered. For
such cases the set of design parameters grows markedly and physically admissible
simplifications are sought. Thus, in addition to the size and geometry aspects, the regions
of influence as well as possible indicators for significance of the multiple interface
interaction are of particular interest.

2. THEORETICAL ANALYSIS

Consider the basic superstructure–recipient configuration sketched in Figure 1. With the
assumption that the superstructures are hollow, the interfaces with the recipient form two
closed contour strips. Following the approach of [1], the interface is idealized to a circular
contour without sacrificing generality. This means that for a thin, linearly elastic, plate-like
recipient, the governing differential equation can be written as

L[v(r, 8)]+ r0v̇(r, 8)= s(r, 8), s(r, 8)= 1
2 d(r−R0) s

q=a

q=−a

sq cos (q8), q$N, (1)

where the dot denotes differentiation with respect to time and L is the associated
differential operator. A list of symbols is given in Appendix III. By employing Kirchhoff
plate theory, and bearing in mind the associated limitations (cf., [3, 5]), then for harmonic
excitation, the differential equation in equation (1) can be transformed into

v̂(k)(k4 − k4
B )= (iv/B')ŝ(k). (2)

Figure 1. Two superstructures attached to plate-like recipient.
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As mentioned in the introduction, two excitation distributions are of primary concern;
namely, the uniform, zero order, stress

sF (r, 8)= sU d(r−R0), (3)

where the amplitude is obtained from the equation

F=g
2p

0 g
a

0

sF (r, 8)r dr d8

and F is the net force, yielding

sU =F/2pR0, (3a)

and the first order ‘‘rocking’’ distribution

sM (r, 8)= sR d(r−R0) cos 8, (4)

whereby the equation

M=g
2p

0 g
a

0

sM (r, 8)r2 cos8 dr d8

gives the amplitude

sR =M/pR2
0 . (4a)

By means of a Hankel transform technique, a formal solution can be straightforwardly
obtained. Thereby, the wavenumber spectrum in the case of a uniform stress is found to
be given by

ŝF (k)=g
a

0

sF (r, 8)rJ0(kr) dr=
F
2p

J0(kR0), (5)

whereas that of the rocking distribution becomes

ŝM (k)=g
a

0

sM (r, 8)rJ1(kr) dr=
M
pR0

J1(kR0) cos 8. (6)

Substituting either of the wavenumber spectra of equations (5) or (6) into equation (2) and
applying an inverse transform results in the translatory velocity fields

vF (r, 8)=
iv
B'

F
2p g

a

0

kJ0(kR0)J0(kr) dk
k4 − k4

B
(7)

and

vM (r, 8)=
iv
B'

M
pR0

cos 8 g
a

0

kJ1(kR0)J1(kr) dk
k4 − k4

B
, (8)
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respectively. The integrals in equations (7) and (8) are readily solved by employing the
method of residues. Therefore, in the case of a zero order distribution, the integral

T0 =gV

zJ0(za)J0(zb)
(z2 − z2

B )(z2 + z2
B )

dz (9)

can be considered along some contour in the complex wavenumber domain. Similarly, the
integral

T1 =gV

zJ1(za)J1(zb)
(z2 − z2

B )(z2 + z2
B )

dz (10)

is to be considered with respect to the first order distribution.

2.1.     

The integrals T0 and T1 can be transcribed to all of the range (−a, a) by using the
identity Jn (z)= 1

2[H
(1)
n (z)+H(2)

n (z)]. For the region, rER0, T0 is analytic in the upper
half-plane provided that

T0 = 1
2 g

a

−a

A(z)J0(zr)H(1)
0 (zR0) dz. (11)

As is evident from equation (9), the integrand has two real-valued poles at 2kB and two
purely imaginary ones at 2ikB . Introducing a small amount of hysteretic losses shifts the
location of the poles clockwise, so an integration along the real axis and along the
semi-circle at infinity yields

T0 = pi s
z=−kB,ikB

Res (z)=
piR2

0

4 6−J0(kBr)J0(kBR0)
(kBR0)2 + i$J0(kBr)N0(kBR0)

(kBR0)2

+
2
p

I0(kBr)K0(kBR0)
(kBR0)2 %7. (11a)

Analogously, in this spatial domain,

T1 = 1
2 g

a

−a

A(z)J1(zr)H(1)
1 (zR0) dz (12)

is analytic in the upper half-plane and can be evaluated to give

T1 = pi s
z=−kB,ikB

Res (z)=
piR2

0

4 6−J1(kBr)J1(kBR0)
(kBR0)2 + i$J1(kBr)N1(kBR0)

(kBR0)2

+
2
p

I1(kBr)K1(kBR0)
(kBR0)2 %7. (12a)

Owing to the fact that the symmetric and anti-symmetric excitation distributions are
treated separately, it is relevant to consider a spatially averaged response, formed on a
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complex power basis, in developing the mobility [6]. Thus, the two interface mobility
components are obtained from

YvF =
g

2p

0 g
a

0

vF (r, 8)s*F (r, 8)r dr d8

bg
2p

0 g
a

0

sF (r, 8)r dr d8b
2

(13)

and

YwM =
g

2p

0 g
a

0

vF (r, 8)s*M (r, 8)r dr d8

bg
2p

0

cos sg
a

0

sM (r, 8)r2 dr d8b
2
, (14)

respectively. The implicit symmetry of an infinite system means that the cross-mobilities
at the excited interface from force to rotational velocity as well as from moment to
translatory velocity vanish identically. Substituting the appropriate ingredients into
equations (13) and (14) leads to

YvF =
v

B'
R2

0

8 6$J0(kBR0)
(kBR0) %

2

− i$J0(kBR0)N0(kBR0)
(kBR0)2 +

2
p

I0(kBR0)K0(kBR0)
(kBR0)2 %7 (13a)

and

YwM =
v

4B' 6$J1(kBR0)
(kBR0) %

2

− i$J1(kBR0)N1(kBR0)
(kBR0)2 −

2
p

I1(kBR0)K1(kBR0)
(kBR0)2 %7 (14a)

for the two principal excitation distributions.
As the Helmholtz number becomes small, the asymptotes for the real and imaginary

parts of the mobilities can be developed as

Re [YvF ] 4
v

8B'k2
B

, Im [YvF ] 4
v

8B'k2
B

2i
p

(kBR0)2[ln (kBR0/2)+ gE − 1
2] (15a, b)

in the case of a uniform distribution. Hereby, it is seen that while the real part, as expected,
approaches that of a point excited, thin infinite plate, the imaginary part does not vanish
identically but reveals an anomaly in the sense that the spatially averaged reactivity is that
of a ‘‘negative spring’’. Indeed, this imaginary part is small, and vanishes as the Helmholtz
number goes to zero but, nonetheless, a spring-like behaviour is not encountered below
a Helmholtz number of unity in the ordinary point excitation case. For the annular
interface, the enclosed area is responding oppositely to that of the exterior domain which
affects the integrated reactivity.

For the moment mobility, the corresponding trends are found to be given by

Re [YwM ] 4
v

16B'
, Im [YwM ] 4

v

16B'
4i
p

[ln (2/kBR0)− gE + 1
4], (16a, b)
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both of which conform to the behaviour of the point moment excited plate, although the
constant term within brackets of the imaginary part depends on the actual excitation
condition.

In the opposite instance, in which the Helmholtz number grows large, the trend of the
force mobility is described by

YvF =
v

8B'k2
B

1
pkBR0

{1+sin 2kBR0 − i[1−cos 2kBR0]}, (15c)

and it is seen that the characteristics resemble those of the infinite beam with an overall,
mass controlled imaginary part. Also, for the moment mobility,

YwM =
v

16B'
4

p(kBR0)3 {1−sin 2kBR0 + i[1−cos 2kBR0]}, (16c)

the beam-like signature is established with the stiffness controlled imaginary part. It should
be emphasized that all expressions discussed above concern the mobility with respect to
the directly excited, annular interface.

2.2.   - 

For the spatial domain in which rqR0, the integrals to consider are

T0r = 1
2 g

a

−a

A(z)J0(zR0)H(1)
0 (zr) dz and T1r = 1

2 g
a

−a

A(z)J1(zR0)H(1)
1 (zr) dz, (17, 18)

for the two distributions respectively. In this case, the method of residues yields

T0r = pi s
z=−kB,ikB

Res (z)=
piR2

0

4 6−J0(kBR0)J0(kBr)
(kBR0)2

+ i$J0(kBR0)N0(kBr)
(kBR0)2 +

2
p

I0(kBR0)K0(kBr)
(kBR0)2 %7 (17a)

and

T1r = pi s
z=−kB,ikB

Res (z)=
piR2

0

4 6−J1(kBR0)J1(kBR0r)
(kBR0)2

+ i$J1(kBR0)N1(kBr)
(kBR0)2 +

2
p

I1(kBR0)K1(kBr)
(kBR0)2 %7 (18a)

This means that the translatory responses are obtained as

vF (r)=
v

8B'k2
B
F0 6J0(kBR0)J0(kBr)− i$J0(kBR0)N0(kBr)+

2
p

I0(kBR0)K0(kBr)%7 (19)
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Figure 2. Annular source and receiver interfaces with the adopted notation.

and

vM (r, 8)=
v

4B'kB

M0

(kBR0)
cos 86J1(kBR0)J1(kBr)

− i$J1(kBR0)N1(kBr)+
2
p

I1(kBr0)K1(kBr)%7. (20)

The rotational responses are readily obtained from the gradient of the translational
velocity which, projected on to the component directions, can be written as

wM (r, 8)=
v

4B'
M0

(kBR0) 0(cos 8, −sin 8) cos 8 6J1(kBR0)0J0(kBr)−
1

kBr
J1(kBr)1

−i$J1(kBR0)0N0(kBr)−
1

kBr
N1(kBr)1−

2
p

I1(kBR0)

×0K0(kBr)+
1

kBr
K1(kBr)1%7+(sin 8, cos 8)

sin 8

kBr 6J1(kBR0)J1(kBr)

− i$J1(kBR0)N1(kBr)+
2
p

I1(kBR0)K1(kBr)%71. (21)

For small Helmholtz numbers, now based on the size of the response interface, the spatial
averaging is irrelevant, since the governing wavelength is large and the transfer mobilities
follow from equations (19) and (21). As the Helmholtz number approaches unity and
above, the variation over the response interface can become significant and must be
taken into account. Although the precise treatment will differ slightly for various
interface geometries, it is again appropriate to consider an annular interface as outlined
in Figure 2.
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From the law of the cosine,

r=zr2
d +R2

r −2rdRr cos c, (22)

with equation (19), the pure force transfer mobility becomes

YvF (rd )=
v

8B'k2
B

1
2p g

2p

0 6J0(kBR0)J0(kBr)− i$J0(kBR0)N0(kBr)

+
2
p

J0(kBR0)K0(kBr)%7 dc, (23)

while those due to a moment, assumed acting along 8= p/2, would be obtained from
averaging

YwM,>(r, 8)=
v

4B'
1

(kBR0) 6cos2 86J1(kBR0)$J0(kBr)−
1

kBr
J1(kBr)%

−i$J1(kBR0)$N0(kBr)−
1

kBr
N1(kBr)%−

2
p

I1(kBR0)

×$K0(kBr)+
1

kBr
K1(kBr)%%7+

sin2 8

kBr 6J1(kBR0)J1(kBr)

− i$J1(kBR0)N1(kBr)+
2
p

I1(kBR0)K1(kBr)%71
=

v

8B'
1

(kBR0) 0$J1(kBR0)H(2)
0 (kBr)+ i

2
p

I1(kBR0)K0(kBr)%
−cos 28$J1(kBR0)H(2)

2 (kBr)− i
2
p

I1(kBR0)K2(kBr)%1 (24a)

and

YwM,_(r, 8)=
v

8B'
sin 28

(kBR0) 6J1(kBR0)H(2)
2 (kBr)− i

2
p

I1(kBR0)K2(kBr)7. (24b)

Here, the indices _ and > denote that the rotational velocity vector is perpendicular to
or in parallel with that of the moment.
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For the integral in equation (23) one can, after some manipulation (see Appendix I),
find that spatial averaging gives

YvF (rd )=
v

8B'k2
B 6J0(kBR0)J0(kBRr )[J0(kBrd )− iN0(kBrd )]

− i
2
p

I0(kBR0)I0(kBRr )K0(kBrd )7. (25)

As one would expect, the force mobility is symmetric with respect to excitation and
response interfaces and the nearfield term is important only for interfaces close to each
other. Also, it is clear that the force transfer mobility in equation (25) degenerates to that
of a response at rd for small enough kBRr .

Moreover, for low frequencies, one finds an asymptotic behaviour described by

Re[YvF (rd )]4
v

8B'k2
B

{1− 1
4[(kBR0)2 + (kBRr )2 + (kBrd )2]} (26a)

and

Im[YvF (rd )]4
v

8B'k2
B

(kBrd )2

p $ln 0kBrd

2 1+ gE +1% (26b)

for the real and imaginary parts respectively. It is seen that while the real part depends
on both geometry and separation, the imaginary part is influenced only by the latter.

Unfortunately, the integrals involving equations (24) are not equally amenable to
analytic treatment. An alternative approach to assess the moment to rotational velocity
interface transfer mobility (effective) is to derive the first order Fourier component of the

T 1

Definition of interface mobility elements

Direct interface mobility

Interface transfer mobility

Interface cross-transfer mobility
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translatory velocity from equation (20) and subsequently project this on to the co-linear
and perpendicular set of main axes, see Table 1. In such a case, the moment transfer
mobility can be formally written as

wM (rd , 8d )
M0Rr

=−
v

4B'kBRr

1
(kBR0)

1
p g

p

−p

(cos (c−8d ), sin (c−8d )) cos (8d + x),

×6J1(kBR0)H(2)
1 (kBr)− i

2
p

I1(kBR0)K1(kBr)7 dc, (27)

which, in view of Graf’s addition theorem, leads to (see Appendix II)

YwM,>(rd , 8d )=
v

4B' 6J1(kBR0)
(kBR0)

J1(kBRr )
(kBRr )

[H(2)
0 (kBrd )− cos 28dH(2)

2 (kBrd )]

+ i
2
p

I1(kBR0)
(kBR0)

I1(kBRr )
(kBRr )

[K0(kBrd )+ cos 28dK2(kBrd )]7 (28a)

and

YwM,_(rd , 8d )=
v

4B'
sin 28d6J1(kBR0)

(kBR0)
J1(kBRr )
(kBRr )

[H(2)
2 (kBrd )]

− i
2
p

I1(kBR0)
(kBR0)

I1(kBRr )
(kBRr )

K2(kBrd )7 (28b)

for the two mobility elements respectively. A comparison of equations (24) and (28) reveals
that they agree for small enough kBRr . As for the force transfer mobility, reciprocity is
seen in the spatially averaged results. For large wavenumbers it is observed that the
dependence on the interface geometry essentially is that of a (sin z)/z divided by the
geometrical mean of the two Helmholtz numbers for the excitation and response interfaces.
It can thus be inferred that the moment transfer mobilities decrease with an increase in
frequency, size of interface and distance, wherefore it is reasonable to focus on the range
of Helmholtz numbers below unity. In this range the asymptotic behaviour of the real parts
are essentially governed by the point characteristics, so that

Re [YwM,>(rd , 8d )]4
v

16B' 61−
(kBrd )2

4 $1−
cos 28d

2 %7 (29a)

and

Re [YwM,_(rd , 8d )]4
v

16B'
sin 28d

(kBrd )2

8
, (30a)

while those of the imaginary parts are somewhat more involved and are found to be given
by

Im [YwM,>(rd , 8d )]4
v

16B' 64p $ln 0 2
kBrd1− gE%−

cos 28d

p $2−0R0

rd1
2

−0Rr

rd1
2

%7 (29b)
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and

Im [YwM,_(rd , 8d )]4
v

16B'
sin 28d

p 62−0R0

rd1
2

−0Rr

rd1
2

7, (30b)

respectively. From the asymptotic expressions it is observed that the imaginary parts of
the moment mobilities depend on the ratios of the typical size of the interface to the
separation distance and the angle. It must be emphasized that neither of these ratios can
exceed unity in practice. It is also interesting to note that no peculiarities are introduced
in the limiting case, as the radii of either interface tend to zero for a moment mobility
element derived in this manner. For the pure moment transfer mobility element, a decrease
in the reactive part is obtained for decreasing ratios when the angle is small, whereas
the reactive part increases for large angles. With respect to the moment cross-transfer
element, a decrease of the ratios consistently leads to an increase in the reactive part.
A similar geometry dependence does not exist for the force transfer mobility. This
means that there is an interesting configuration feature implied by the moment mobilities
in that, for those cases in which a predominant vectorial moment component can be
identified, the orientation of superstructures situated side-by-side, along a line
perpendicular to the moment vector, should preferably be designed to be long in the
direction of the moment. This conclusion also holds for a lateral force excitation at the
top of a superstructure, resulting in a corresponding moment excitation of the recipient.
Moreover, superstructures, adjacent in the direction of the moment, should be closely
spaced. Accordingly, it appears reasonable to ‘‘extrapolate’’ these conclusions into
two parallel, narrow superstructures, co-linear with the predominant moment but
well spaced in the orthogonal direction, as an advantageous configuration for small
Helmholtz numbers in order to reduce the influence of the transfer path via a plate-like
recipient.

Finally, the interface cross-transfer mobility from moment to translatory velocity or,
reciprocally, from force to rotational velocity, can be derived in a completely analogous
manner by considering equation (20). Thus, a spatial averaging over the (annular) response
interface yields

YvM (rd , 8d )=
v

4B'kB

1
(kBR0)

1
2p g

p

−p

cos (8d + x)6J1(kBR0)J1(kBr)

− i$J1(kBR0)N1(kBr)+
2
p

I1(kBR0)K1(kBr)%7 dc

=
v

4B'kB
cos 8d6J1(kBR0)

(kBR0)
J0(kBRr )H(2)

1 (kBrd )

− i
2
p

I1(kBR0)
(kBR0)

I0(kBRr )K1(kBrd )7. (31)

It is seen that the propagation function is anti-symmetric, so that the mobility is no longer
symmetric with respect to the excitation and response interfaces. This means that in order
to obtain the force to rotational velocity cross-transfer component, the indices R0 and Rr
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Figure 3. Normalized real (top) and imaginary (bottom) parts of moment (——) and force (–·–·–) mobility.
Asymptotic behaviour of moment (---) and force (····) mobilities for small Helmholtz numbers.

must be interchanged in equation (31). For low frequencies and small dimensions of the
two interfaces the asymptotic behaviour

Re [YvM (rd , 8d )]4
v

4B'kB
cos 8d

kBrd

4 61−
(kBR0)2

8
−

(kBRr )2

4 7, (32a)

Im [YvM (rd , 8d )]4−
v

4B'kB
cos 8d

kBrd

p 6ln 0kBrd

2 1+ gE − 1
2 +

1
40R0

rd1
2

+ 1
20Rr

rd1
2

7 (32b)

clearly illuminate the non-symmetry. Roughly, this cross-transfer mobility element initially
grows linearly with frequency and distance between the two interfaces. The imaginary part
is additionally influenced by a logarithmic dependence on frequency and distance. The
asymptotes also show that the size and orientation of the interfaces play a role. Moreover,
from the last part of equation (31) it is noted that, for large arguments, the mobility will
decrease, and hence it can be deduced that a maximum occurs in the transition region from
‘‘near’’ to ‘‘farfield’’ behaviour.

3. NUMERICAL ANALYSIS

In Figure 3 are shown the direct moment and force effective mobilities for an annular
interface, normalized with respect to the real parts of the corresponding ordinary point
mobilities. Also included are the asymptotes for small Helmholtz numbers according to
equations (15) and (16). It is seen that the annular interface has a negligible effect on force
as well as moment mobility, relative to that of ordinary point excitation, as long as the
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circumference is less than the governing wavelength or, equivalently, the radius is less than
a sixth of the wavelength. In this range, the asymptotes derived can be regarded as virtually
exact. As frequency or the radius increases, the mobility diminishes and exhibits rounded
maxima and pronounced minima, a feature that has been discussed in more detail in
reference [1]. Apart from the region in the immediate vicinity of kBR0 equals unity, also
the asymptotes according to equations (15c) and (16c) operate satisfactorily. It is worth
noting that in the upper range, the real parts of moment and force mobilities have
envelopes with identical frequency dependencies in an absolute sense and the discrepancy
established in the diagram is a result of different normalizations. As anticipated, the
reactive parts oscillate around zero, and for Helmholtz numbers above unity settle down
having envelopes identical to those of the real parts. In contrast, the signatures for small
Helmholtz numbers are different and conform to those of the point quantities. For the
imaginary parts, the weakly negative force mobility and the weakly ‘‘hardening’’ stiffness
controlled moment mobility can be observed.

It is thus clear that ordinary point mobilities are applicable with negligible loss in
accuracy in the range of Helmholtz numbers below unity but that above there the concept
of interface mobility should be employed. Particular attention must be paid to the region
around unity whereas, for higher frequencies and large interfaces, the asymptotic
expressions yield valid results. From a design point of view, however, the information
furnished by the asymptotic relations is appropriate.

In Figure 4, the interface force transfer mobility is presented. For consistency, all
transfer and cross-transfer mobilities are displayed versus the same Helmholtz number,
kBR0, as the direct interface mobilities. This is, however, not always the most appropriate
choice for the interpretation owing to the fact that for some transfer mobilities, the distance
between the excitation and response interfaces turns out to be more influential than the
typical size of the interface. Accordingly, the region of applicability of the associated
asymptotic expressions are more conveniently assessed from a Helmholtz number equal

Figure 4. Normalized real (top) and imaginary (bottom) parts of force transfer mobility. Rr /R0 =1, Rd /r0 =2;
(——), Rr /R0=1; rd /R0 =5; (— —), Rr /R0 =2; rd /R0 =3; (·····), Rr /R0 =2; rd /R0 =5; (–·–·–).
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Figure 5. Normalized real (top) and imaginary (bottom) parts of moment transfer mobility. Rr /R0 =1,
rd /R0 =2. ——, 8d=0; ·····, 8d = p/6; - - - -, 8d = p/4; — —, 8d = p/3; –·–·–, 8d = p/2.

to unity when based on the distance rd . This limit also constitutes the important transition
from a ‘‘nearfield’’ to a ‘‘farfield’’ behaviour.

It is observed in Figure 4 that the ‘‘nearfield’’ behaviour is featured by that of the
associated ordinary point mobility. Above there, a marked transition region is obtained
in which all geometrical parameters are influential. Finally, the ‘‘farfield’’ behaviour is seen
to render comparatively small contributions from one interface to the other. As for the
direct interface mobilities, particular attention should be paid the transition region.

The qualitative trend and geometrical parameter influence are those described by the
asymptotic expressions given in equations (26). Furthermore, it is found from the
numerical results that the interface geometry is influential mainly in the range below a
Helmholtz number of unity, a finding which is important with respect to both prediction
and design. Accordingly, the effects of the reactive parts cannot be neglected for multiple
interfaces subject to force excitation.

The interface moment transfer mobility is shown in Figures 5–8 for some ratios of
interface dimensions and separations. Owing to the additional angular dependence, the
influence of interface separation and size is presented in four diagrams. For adjacent
interfaces of similar dimensions, illustrated in Figure 5, it is demonstrated that the angular
dependence is mainly confined to the transition region regarding the real part while the
angle affects all of the ‘‘nearfield’’ behaviour of the imaginary part. When the dimension
of either interface is enlarged, the angular dependence is only minutely diminished, which
is established from a comparison of Figures 5 and 6. In contrast, the effect is more
pronounced when the interface separation is increased but still essentially confined to the
transition and nearfield regions respectively; see Figure 7. As could be expected from a
wave-theoretical point of view, the real and imaginary parts exhibit oscillatory signatures
for large Helmholtz numbers, which is clearly manifested as the distance from the
excitation to the response interface increases. The transition from ‘‘nearfield’’ to ‘‘farfield’’
behaviour is shifted to smaller Helmholtz numbers, resulting in a small decrease in the
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Figure 6. Normalized real (top) and imaginary (bottom) parts of moment transfer mobility. Rr /R0 =2,
rd /R0 =3. ——, 8d=0; ·····, 8d = p/6; - - - -, 8d = p/4; — —, 8d = p/3; –·–·–, 8d = p/2.

mobilities. In this example one may observe the wave effect which is superimposed on
the angular dependence. This means that as the phase relation is reversed between the
excitation and response interfaces, and so is the angular dependence. Accordingly, the
analytical findings discussed in conjunction with equations (28a) and (29a) are relevant

Figure 7. Normalized real (top) and imaginary (bottom) parts of moment transfer mobility. Rr /R0 =1,
rd /R0 =5. ——, 8d=0; ·····, 8d = p/6; - - - - , 8d = p/4; — —, 8d = p/3; –·–·–, 8d = p/2.
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Figure 8. Normalized real (top) and imaginary (bottom) parts of moment transfer mobility. Rr /R0 =2,
rd /R0 =5. ——, 8d=0; ·····, 8d = p/6; - - - -, 8d = p/4; — —, 8d = p/3; –·–·–, 8d = p/2.

only for the ‘‘nearfield’’ behaviour. An increase in the ratio of the typical dimensions of
response to those of the excitation interfaces has a negligible effect on the mobilities for
small Helmholtz numbers whereas the ‘‘farfield’’ behaviour is smoothed; compare Figures
7 and 8. It is thus generally beneficial for designs, operating at high frequencies, to utilize
differing and comparatively large size cross-sections.

The features of the interface moment cross-transfer mobility are displayed in Figures
9–12. As for the transfer mobility, the parameter is the angle between the excitation and
response interfaces, relative to an axis perpendicular to the moment vector, see Figure 2.
It is clearly established that the real part is most significant in the transition region and
has a maximum for an angle of 45°. The imaginary part, on the other hand, is large and
stiffness controlled in the region of ‘‘nearfield’’ behaviour. Moreover, and in agreement
with the transfer mobility, an enlargement of either the excitation or response interface
results in a minute reduction of the mobility for small Helmholtz numbers, compare
Figures 9 and 10 as well as Figures 11 and 12.

The influence of the separation between the two interfaces, in contrast, is more
pronounced as can be seen from a comparison of Figures 9 and 11 or Figures 10 and 12,
where also the phase progress is clearly established. An increase in the separation affects
the moment cross-transfer mobility in two ways. First, the maxima of both parts increase,
the real being governed by the second order Bessel function and the imaginary approach
2/p when normalized; cf., equations (28b) and (30b) respectively. Second, the maxima are
shifted towards smaller Helmholtz numbers. This is particularly important with respect to
the real part, where the maximum is not found for small arguments but at values larger
than zero. Hence, there is an implied frequency dependence of the optimum location of
neighbouring superstructures with respect to the in- or anti-phase cross-coupling between
moment components.

The interaction between propagation and spatial interface dependence is further
illustrated in Figure 12, in which case the size of the response interface is doubled compared
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Figure 9. Normalized real (top) and imaginary (bottom) parts of moment cross-transfer mobility. Rr /R0 =1,
rd /R0 =2. ·····, 8d = p/12; - - - -, 8d = p/6; — —, 8d = p/4.

with that of the excitation. Although the maxima of both real and imaginary parts are
decreased slightly (compare Figure 11) the primary influence, however, is noted in the
range of large Helmholtz numbers where both parts of the mobility are smoothed.

Finally, the cross-transfer mobility from moment to translatory velocity is presented in
Figures 13–16 for some values of the interface radii and separations. Again, the angular

Figure 10. Normalized real (top) and imaginary (bottom) parts of moment cross-transfer mobility. Rr /R0 =2,
rd /R0 =3. ·····, 8d = p/12; - - - -, 8d = p/6; — —, 8d = p/4.
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Figure 11. Normalized real (top) and imaginary (bottom) parts of moment cross-transfer mobility. Rr /R0 =1,
rd /R0 =5. ·····, 8d = p/12; - - - -, 8d = p/6; — —, 8d = p/4.

position constitutes the parameter in the graphs. For adjacent interfaces, it is observed that
in this case as well, the maximum of the real part of the cross-transfer mobility is obtained
in the transition region where the imaginary part changes sign and turns from stiffness to
mass controlled behaviour. Also, the imaginary part is a maximum in the transition region.
As expected from the theoretical results for the nearfield range, the cross-transfer mobility

Figure 12. Normalized real (top) and imaginary (bottom) parts of moment cross-transfer mobility. Rr /R0 =2,
rd /R0 =5. ·····, 8d = p/12; - - - -, 8d = p/6; — —, 8d = p/4.
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Figure 13. Normalized real (top) and imaginary (bottom) parts of moment translatory velocity cross-transfer
mobility. Rr /R0 =1, rd /R0 =2. ——, 8d=0; ·····, 8d = p/6; - - - -, 8d = p/4; — —, 8d = p/3.

decreases with decreasing angle between the moment vector and the direction to the centre
of the response interface (increasing 8d ). Reciprocally, an increase in the angle between
a translatory force-excited interface and the rotational velocity vector component increases
the cross-transfer mobility. Naturally, the alternating sign for large Helmholtz numbers
reverses this pattern.

For interfaces close to each other, an increase of the size of the response interface leads
to a slight decrease in the cross-transfer mobility as observed from a comparison of Figures
13 and 14. Moreover, the maxima of both parts and the onset of the sign alternation is
shifted downwards in Helmholtz numbers.

The effect of interface separation (compare Figures 13 and 15 or Figures 14 and 16) is
similar to that found for the cross-transfer mobility from moment to a rotational velocity
component perpendicular to the moment vector, although not as pronounced. In this case,
the maximum of the real part is governed by the first maximum of the first order Bessel
function, implying that this maximum occurs at smaller Helmholtz numbers than that of
the moment to rotational velocity cross-transfer mobility. Owing to the bending wave
nearfield, the region in which the imaginary part is largest is generally found below that
containing the maximum of the real part. Also, it should be borne in mind that a maximum
in the propagation function is ‘‘filtered’’ by the interface geometries, so that its location
in Helmholtz number space cannot be predicted exactly without considering all ingredients
involved. Nevertheless, the presence of pronounced maxima in the cross-transfer mobilities
demonstrates the necessity to take the spatial configuration into account for designs
comprising multiple interfaces. Hereby, the difference in angular dependence between
cross-transfer mobility from moment to a rotational velocity component perpendicular to
the moment vector and cross-transfer mobility between rotational and translational field
variables should be noted. While the former is a maximum for 45°, the latter peaks for
0°. Evidently, this difference establishes another set of design criteria which can be properly
taken into account only when the characteristics of the source are available.
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Figure 14. Normalized real (top) and imaginary (bottom) parts of moment translatory velocity cross-transfer
mobility. Rr /R0 =2, rd /R0 =3. ——, 8d=0; ·····, 8d = p/6; - - - -, 8d = p/4; — —, 8d = p/3.

For sources involving rotating parts, the angular dependence of moment to translatory
velocity cross-transfer coupling can be of substantial importance, because of the
simultaneous dependence on the separation between excitation and response interfaces. As
is illustrated by Figure 15, however, the alteration in sign in the mobility realizes a

Figure 15. Normalized real (top) and imaginary (bottom) parts of moment to translatory velocity cross-transfer
mobility. Rr /R0 =1, rd /R0 =5. ——, 8d=0; ·····, 8d = p/6; - - - -, 8d = p/4; — —, 8d = p/3.
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Figure 16. Normalized real (top) and imaginary (bottom) parts of moment to translatory velocity cross-transfer
mobility. Rr /R0 =2, rd /R0 =5. ——, 8d=0; ·····, 8d = p/6; - - - -, 8d = p/4; — —, 8d = p/3.

possibility to suppress the influence of cross-coupling. Although the efficiency of tuning
measures should not be overestimated, its potential for tonal excitation is worth
consideration in conjunction with optimization of multiple interface configurations.

From a comparison of the results in Figures 15 and 16 one may again observe the
smoothing effect of an increase of the dimensions of the response interface when removed
from that of the excitation as discussed in conjunction with the results presented in Figures
11 and 12. In an absolute sense, the moment to translatory velocity cross-transfer mobility
increases linearly with frequency for small Helmholtz numbers and decreases with
frequency raised to the 3/4 power in the ‘‘farfield’’ behaviour range, which reinforces an
overall maximum in the transition region. The frequency dependence in the upper range
is identical for all elements and accordingly the influence of transfer and cross-transfer
elements vanishes in the limit. In comparison with ordinary point excitation, however, the
distributed excitation and response act to enhance the attenuation.

In contrast to the transfer mobility components, the cross-transfer mobilities all are
simple functions of the angle between the excitation component and the centre of the
response interface. This means that the angular and distance effects as well as that of
interface geometry are separable and can be optimized independently.

It is clear from the numerical examples presented that the important range is below and
at the transition from near to farfield behaviour. This does not mean that the mobilities
are necessarily negligible in the farfield range but, rather, demonstrates that the transfer
and cross-transfer contributions are far from subordinate.

4. CONCLUDING REMARKS

The theoretical conclusion that, for closed contour interfaces between superstructures
and recipients, the zero and first order excitation distributions constitute the prime
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components in structure-borne sound and vibration transmission, substantially facilitates
the treatment of subsystem assemblies with extended interfaces. In turn, the interface
mobilities proposed herein establish fundamental subsystem characteristics for a
reformulation of the transmission across large interfaces, into an approach identical to that
for point-like contact.

The complex mobilities derived for the directly excited interface, under the assumption
of annular shape, clearly demonstrate that for Helmholtz numbers kBR smaller than
unity where R is the radius of the interface, the ordinary point mobility concept is
valid. For the transfer and cross-transfer mobilities, however, two interface geometries
are involved, and it is found that the Helmholtz numbers for both should be less than
unity to employ the corresponding point quantities. In general therefore, a criterion
for an assessment of the applicability of ‘‘point’’ quantities results from the perimeter
of the interfaces being less than the wavelength of the governing wave. For
Helmholtz numbers larger than unity, the spatial matching of the excitation distribution
and the trace of the free waves in the excited structure govern the signatures of the
mobilities.

The geometry assumed in the analysis, i.e., annular, continuous interfaces between
super- and substructures, quantitatively restricts the application of the mobilities derived
to this shape. In a qualitative sense, however, the results are applicable and valid since all
geometrical aspects are taken into account and, for not too extreme shapes of the
interfaces, the results presented herein should establish satisfactory approximations,
provided that the perimeter of the hollow cross-section is preserved. This means that the
mobilities derived also provide insight into the implications of interfaces made up by
groups of contact points. Moreover, in this study mobilities are derived for a thin, infinite
plate, partly owing to the theoretical transparency but primarily because of the practical
significance of such structures in noise and vibration control. It can thus be concluded that
for thin, plate-like structures, all interface mobility elements decrease with frequency for
large Helmholtz numbers provided that the net force or moment remains invariant.
Physically, this can be interpreted as an overall, increasing spatial mismatch in trace
wavelength at the interfaces and the low Helmholtz number range, accordingly, becomes
the more significant. For transfer and cross-transfer interface mobilities, on the other hand,
the emphasis is either on the region of small Helmholtz numbers where transfer mobilities
are generally large or on the transition region in the case of cross-transfer mobilities. It
is hence reasonable to consider particularly the low and mid-frequency ranges at a design
stage.

It is found that the asymptotes developed for direct interface mobilities are applicable
for all of the Helmholtz number ranges below and above unity respectively. In the
immediate vicinity of unity, the asymptotes regarding the real parts are conservative, while
those for the imaginary parts yield slight underestimates. Owing to the progressing spatial
mismatch for large Helmholtz numbers, one can conclude that ordinary ‘‘point’’ quantities
always constitute a conservative estimate. Furthermore, as in the case of ordinary point
excitation, the real part of the interface force mobility is essentially resistive in nature. In
contrast, however, a small reactive part results when the excitation is distributed over an
annular interface. The real part of the moment mobility has a global maximum for
Helmholtz numbers just below two and the imaginary part is stiffness controlled in
virtually all of the range.

From the asymptotes related to the interface transfer and cross-transfer mobilities for
small Helmholtz numbers, it is established that there are direct dependencies on the
geometries of the interfaces as well as their relative locations. The applicability of the
pertinent asymptotic expressions developed, therefore, varies with the relative parameter
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magnitude. This means that for multiple interfaces, an eventually important aspect of
design is the spatial orientation and optimization. The numerical results also indicate that
inequality of the dimensions of excitation and response interfaces leads to a strengthened
influence at low frequencies. For large Helmholtz numbers, the signature is that of a
damped oscillation where, in addition to frequency, the decay is dependent on the
dimensions of the interfaces as well as the distance. Hence, with respect to the transfer and
cross-transfer characteristics, ordinary point quantities do not necessarily realize upper
bounds. Although herein only the zero and first order excitation distributions are
considered explicitly, the analysis is straightforwardly generalizable to higher order
distributions when required. It is to be noted, however, that such an extension also implies
a growing number of interface cross-transfer mobility elements.

It should be emphasized that although the results presented above are quantitatively
valid only for thin plates and hence, in some cases in practice, there may be limitations
introduced by the fact that the governing wavelength of the recipient becomes comparable
with the recipient thickness and a continuum theoretical formulation should be employed
[3], the spatial and configurative dependencies discussed remain valid. Moreover, for
Helmholtz numbers below unity, the rigid indenter contact condition corresponds to an
annular excitation [7] and thus the analyses presented above are also valuable for
non-hollow superstructures provided that its rigidity is large compared with that of the
recipient. By virtue of the superposition principle, the approach presented is readily
extended to handle arbitrary excitation fields over wide annular and circular contact areas
from integration in the radial direction.

Finally, the interface mobility elements for plate-like structures are directly
implementable in design procedures for multiple, single unit, superstructures. For built-up,
multi-unit superstructures such as extended and partitioned machinery seatings, the results
can be superposed to give insight into the performance and characteristics of the recipient.
Under the assumption of predominant global behaviour of superstructures, this approach
establishes a possibility to work with a conventional transmission line formulation without
recourse to an integral equation formulation.
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APPENDIX I: INTERFACE FORCE TRANSFER MOBILITY

From equations (22) and (23), the spatially averaged force transfer mobility can be
written as

YvF (rd , 8)=
v

8B'k2
B

1
2p 6J0(kBR0)$g

2p

0

J0(kBzR2
r + r2

d −2Rrrd cos c) dc

−i g
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d −2Rrrd cos c) dc%7, (AI.1)

in view of the relation

H(2)
0 (−iz)= (2i/p)K0(z). (AI.2)

Provided that kBRr Q kBrd , which is always the case when the dimensions of the annular
excitation interface are equal to or larger than those of the response interface and a transfer
mobility is considered, then [6]

g
p

0

J0(za2 + b2 −2ab cos x) dx=zpG(1/2)J0(a)J0(b) (AI.3)

and

g
p

0

N0(za2 + b2 −2ab cos x) dx=zpG(1/2)J0(a)N0(b), (AI.4)

where a and b are identified as kBRr and kBrd respectively. Since J0 and N0 are even
functions, the result presented in equation (25) follows.

Owing to the fact that the transfer mobility is symmetric with respect to kBRr and kBR0,
one can infer that the condition of kBRr Q kBrd becomes irrelevant since, for a difference
in interface dimension and the two interfaces being adjacent, one can always circumvent
the troublesome configuration by consideration of the reciprocal case.

As a side result, the derivation given above establishes the solution of the integrals

g
p

0

K0(za2 + b2 −2ab cos x) dx=−2ip2I0(a)K0(b), =a=Q =b, (AI.5)

and

g
p

0

I0(za2 + b2 −2ab cos x) dx= pI0(a)I0(b). (AI.6)
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APPENDIX II: INTERFACE MOMENT TRANSFER MOBILITY

From equation (27) the effective moment transfer mobility with respect to the first order
(rocking) excitation distribution can be rewritten as

YvM,>(rd , 8d )=
v

4B'kBRr $−cos 8d
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1
p g

p

−p

cos c {cos 8d cos x
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p
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Similarly, the cross-transfer mobility involving the rotational response with its unit vector
perpendicular to that of the moment can be found to be formally given by

YvM,_(rd , 8d )=−
v

4B'kBRr $− sin 8d

(kBR0)
1
p g

p

−p

cos c {cos 8d cos x

−sin 8d sin x}6J1(kBR0)H(2)
1 (kBr)− i

2
p

I1(kBR0)K1(kBr)7 dc

+
cos 8d

(kBR0)
1
p g

p

−p

sin c{cos 8d cos x−sin 8d sin x}6J1(kBR0)H(2)
1 (kBr)

− i
2
p

I1(kBR0)K1(kBr)7 dc%. (AII.2)

Let

S11 =g
p

−p

cos c cos xH(2)
1 (kBzR2

r + r2
d −2Rrrd cos c) dc,

S12 =g
p

−p

cos c sin xH(2)
1 (kBzR2

r + r2
d −2Rrrd cos c) dc,

S21 =g
p

−p

cos c cos xK1(kBzR2
r + r2

d −2Rrrd cos c) dc,

S22 =g
p

−p

cos c sin xK1(kBzR2
r + r2

d −2Rrrd cos c) dc, (AII.3a–d)
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and

S31 =g
p

−p

sin c cos xH(2)
1 (kBzR2

r + r2
d −2Rrrd cos c) dc,

S32 =g
p

−p

sin c sin xH(2)
1 (kBzR2

r + r2
d −2Rrrd cos c) dc,

S41 =g
p

−p

sin c cos xK1(kBzR2
r + r2

d −2Rrrd cos c) dc,

S42 =g
p

−p

sin c sin xK1(kBzR2
r + r2

d −2Rrrd cos c) dc, (AII.4a–d)

represent the integrals in equations (AII.1) and (AII.2). There are four principal kinds of
which S11 is an example of the first and which can be rewritten by means of Graf’s addition
theorem (see, e.g. reference [6]) as

S11 =g
p

−p

cos c s
a

q=−a

H(2)
q+1(kBrd )Jq (kBRr ) cos qc dc

= s
a

q=−a

H(2)
q+1(kBrd )Jq (kBRr ) g

p

−p

cos c cos qc dc

= pJ1(kBRr )[H(2)
2 (kBrd )−H(2)

0 (kBrd )], (AII.5)

owing to the fact that all multiple angle integrals are identically zero.
Indeed, this scheme is valid also for the modified Bessel functions, since

Kn (z)=−(pi/2)e− npi/2H(2)
n (−iz), (AII.6)

from which the Bessel and Neumann functions can be regained so that S21 is found to be
given by

S21 =−
p

2 g
p

−p

cos c cos xH(2)
1 (−ikBzR2

r + r2
d −2Rrrd cos c) dc

=−
p

2
s
a

q=−a

H(2)
q+1(−ikBrd )Jq (−ikBRr ) g

p

−p

cos c cos qc dc

=−(p2/2)J1(−ikBRr )[H(2)
2 (−ikBrd )−H(2)

0 (−ikBrd )]

= pI1(kBRr )[K2(kBrd )+K0(kBrd )]. (AII.7)

The second and third kinds of integrals involve either

g
p

−p

cos c sin qc dc or g
p

−p

sin c cos qc dc, (AII.8, AII.9)
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which both vanish owing to orthogonality. The fourth kind leads to

S32 =g
p

−p

sin c s
a

q=−a

H(2)
q+1(kBrd )Jq (kBRr ) sin qc dc

= s
a

q=−a

H(2)
q+1(kBrd )Jq (kBRr ) g

p

−p

sin c sin qc dc

= pJ1(kBRr )[H(2)
0 (kBrd )+H(2)

2 (kBrd )] (AII.10)

as well as

S42 =−
p

2 g
p

−p

sin c sin xH(2)
1 (−ikBzR2

r + r2
d −2Rrrd cos c) dc

=−
p

2
s
a

q=−a

H(2)
q+1(−ikBrd )Jq (−ikBRr ) g

p

−p

sin c sin qc dc

=−(p2/2)J1(−ikBRr )[H(2)
2 (−ikBrd )+H(2)

0 (−ikBrd )]

= pI1(kBRr )[K2(kBrd )−K0(kBrd )], (AII.11)

and, as could be expected, these are identical to those of the first kind. Hence, substitution
back into equations (AII.1) and (AII.2) yields the effective interface moment transfer
mobilities as stated in equations (28).

APPENDIX III: SYMBOLS AND NOTATION

A function
B' flexural stiffness per unit length
E Young’s modulus, amplitude
F force
H Hankel function
I modified Bessel function
J Bessel function
K modified Bessel function
L differential operator
M moment
N natural number
N Newmann function
R radius of interface
S integral, area
Y mobility
a, b auxiliary variables
i imaginary unit
k wavenumber
q number
r polar co-ordinate
v translational velocity
w rotational velocity
z complex variable
gE Euler’s constant
d Dirac’s delta function
x auxiliary angle

c auxiliary angle
z complex variable
8 polar co-ordinate
r density
v angular frequency
s normal stress

Indices

B flexural
F force
M moment
n order
v translational velocity
w rotational velocity
q index, order
d interface centre
r response interface
0 excitation interface

Notation

·· time differentiation twice
* complex conjugate
g wavenumber spectral quantity
> parallel
_ perpendicular
– spatial average


